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An array of omni-directional hydrophones in tow is used to locate distant
sources of acoustic radiation.

Where it is impossible, either actually or virtually, either to rotate the
antenna or to change its shape, it is expedient to maximize the parallactic
angle of point source and antenna through lengthening the antenna. and.
since the antenna in question is implemented in the form of a string of dis-
crete elements, to maximize the noise-rejective potential of the antenna by
maximizing the number of elements in the string.

Although a priori the placing of hydrophones in an array is influenced
by an uncertainty in knowledge of array disposition, an uncertainty which
increases with distance from the towing vessel, for convenience an actual ar-
ray with hydrophones spaced equidistantly is assumed for most of the thesis.
although a modicum of flexibility of the antenna is allowed. In practice, the
appropriateness or otherwise of a particular disposition of hydrophones is a
function of the actual location and spectral character of a source.

In virtue of the uncertainty of sensor location as well as of modest relative
motion of source and array, phase-differences of signal, reflected by measured
pressures compared between hydrophones, are surmised in terms of bands of
tolerance. It is shown that three such phase ‘bins’ per wavelength is optimal
i a novel method presented in the thesis for comparing and contrasting the
contents of bins such that a maximum may be associated uniquely with the
location of a source.

The thesis is submitted with the conviction that a practical solution to
a contemporary given problem of ‘fuzzy’ instrumentation has been found,
a solution elaborated upon a theoretical basis with which, taking account
of modern facilities for practical implementation, advances in accuracy and
speed of processing beyond existing limits may be achieved. The thesis is
submitted in the hope that, by varying inductive and deductive patterns of
reasoning, a contribution will have been made to the theoretical basis for
eliciting unique solutions to fuzzy problems, for which a calculus as well as
appropriate modes of algebraic and statistical logic may be requiring to be
developed.



3 The Theoretical Basis of a Distinction Be-
tween Near-Field and Far-Field

3.1 The Data Model Assumed in the Thesis

In order to derive a differential equation, in which is reflected the propagation
of acoustic disturbances in a fluid medium, we adopt a common approach
and assume, inter alia and fundamentally, that physical quantities in fluid
mechanics may be expressed as sums of state-steady values plus acoustic
ones.” In the plane z = 0 the pressure p(z,y,1) shall be given as follows:

p(z,y,t) = po(z,y) + p'(2,y.1), (8)

where
pD T ; ?

i. e. the ambient value in the location and circumstances of interest, and
where the form p" should convey to the reader the sense of “instantaneous
value’.

p’ is periodic with long-time mean value zero.

[t seems that many assumptions are requiring to be made in order to
derive a simple equation. In practice, factors are likely to be present and
effective that may damage or invalidate any such simple wave solution.

Let ¢ be the acoustic potential. Then

2, L&
Vig= 2 gz’ 0]
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Take the origin at the centre of a small pﬂlsating spherical surface radi-
ating sound in all directions. Then the wave equation can be written as

g; L &, 500 ,
VES G5 5 )
% *(re)
T o (12)

%See D. Ross, Mechanics of Underwater Noise, New York, 1976, p. 23
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Hence write .
fé: f(?‘,t)‘ ‘ (13)

r

Then
*f 10%
ISR TN
Equation 14 is the one-dimensional wave equation, with the radius r as
the co-ordinate. The solution of Equation 14 has the form

(14)

f = fl(ct — 7’) + .[.Z(Ct + .r.)’ (]5)

where f; and f; are arbitrary functions. Thus the general solution of Equa-
tion 12 is of the form

d Silet —1) " falet + 7“). (16)

r r

The first term of Equation 16 is an out-going wave, while the second is a
wave coming in to the origin. An out-going monochromatic spherical wave
¢ is given by

4 .
Q — /fez(k'r—wt)? (17)

and an in-coming one ¢ is given by

A ;
f el(u}i—k?‘)- | (18)

|-e-

Returning to the general three-dimensional arrangement, if ¢ varies sinu-
soidally with time, 7. e. if
9= e d(r), (19)
then oy
; d¢ W
B —w? e ®(r), (20)
and
Vi = et Vi0(r). (21)
Hence the wave equation becomes
w

Vip = —(E)%, (22)
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V20 4 k*® =0 (Helmholtz),° (23)
where wmf 2 )
w T T
b e — = = —, . 24
h ¢ c A (24)

Turning now to the acoustic field created by a point source, consider a
small hollow spherical shell, with long-time mean radius ag, of which the
cavity volume undergoes a very small uniform periodic fluctuation. This
fluctuation gives rise to a mass flux () in the medium, as follows:

Q(t) = paV (t) = Qo coswt, (25)

where pg is the density of the fluid at the temperature of interest and V (t)
1s the rate of change of volume. With small fluctuations in volume, @ may
be expressed in terms of the area and the radial velocity of the surface of the

shell, 7. e. -
Q(t) = po(drag) é = poSou, (26)
where a is the radial velocity, Sy is the long-time mean surface area of the
shell, i. e.

So = 4maj, (27)

and where

U = uge™? = —Q(%GM. (28)
dmagpo

Insofar as the vibrating surface is everywhere in contact with the fluid,
the instantaneous particle speed v'(ag) must be equal to the surface vibratory
speed u. Given such equality, the acoustic pressure at the surface of the shell
may be calculated by multiplying u by the specific acoustic impedance z,,
evaluated at the surface. Whereas it can be shown that the instantaneous

particle velocity v’ is given by

7

g':ikf(l—(g))a (29)

and the instantaneous pressure p’ by

p' = ipwd, (30)

508ee C. A. Coulson and A. Jeflrey, Waves, London, 1988 (first published 1941), p. 141
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so the specific acoustic impedance z,, by definition, is given by

P pow £
Za T 1_1_(1) (31)

kr

Now, with ¢o understood as the long-time speed of sound for the fluid in
question,

éa(ﬂ‘fo) Q’(Go) = E’(GU) (32)

o (kao)® + i(kao)
Bl 1+ (kap)?
(kao)® 4 i(kao) Qo
—¢
L+ (kao)?  4magpy
Qoco iwt 4
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=  pPofo

T ar € 1+ (kao)?
o Q[)UJ twi kz + %

(D) T (kao)?

wQo it k 4+ i

Ar 14 (kag)?

wlo it kag + 1

drag 1+ (kag)?

_ wlo J ot (Wit )

= , : 33
dmag /1 4 (kao)? (33)
where
1 iy :
g = a,rcta‘n(m) P g arctan(kag), (34)
if 4 1
Co
WK - =-F7+=—. 35
P . (35)

1t follows that we can give the instantaneous pressure p’ (r) at distance r from
the centre of the sphere as follows:

a Ll
B.'(T) — ?UBF(GU)G-—M?(/—&O) (36)



= €
rodmag /1 4 (kao)?

UJQO ei(ga'l"kﬂ())

ao wlo 1 i(wt+6a) ,—ik(r —aq) (37)

— ei(wt—lcr). (38) ;
Y (kag)? -
If 1
, — 39
TS 2rk’ (39)

where ag, again, is the long-time average radius of the spherical shell, then

™

0y ~ — — kag, 40
5 %o _ (40)

and we can take the second term of Equation 38 as 7, 7. e.
e-i(9a+.‘mo)

— v, (41)
1 + (kag)2
In summary, then, if the mean radius aq of the radiating hollow spherical
shell is very small compared to an acoustic wavelength, then the instanta-
neous radiated pressure p/(r) at a distance r from the centre of the source is
given by B
- w@o ilwi—kr)

/ —
P (T) —! 4y

(42)
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6.2 Phase Binning

In a final-year undergraduate project the present author had developed a
method of ‘optimal binning’.*” The problem was to elicit the periodicities
of Sigma Scorpii, a close binary star, from noisy data. In particular, the
measurements of the radial velocity of the star-system had been taken over
a long period of time, of the order of decades indeed, and at wildly irregular
known intervals.

It was found that the irregularity of the sampling intervals was responsible
for the presence of aliases of the true periods on the periodogram obtained
from applying the Fourier Transform to the data. The present author con-
ducted a simple experiment with artificial data. First, he applied the Fourier
Transform to samples taken at regular intervals. The periods of the arti-
ficial data appeared as expected with only their expected integer multiples
as aliases. Next, he applied the Fourier Transform to the artificial data at
the same irregular intervals as those at which the radial velocities of Sigma
Scorpit had been measured. This time, however, not only did the true pe-
riods and their integer-multiple aliases appear, but also a number of aliases
associated with other, spurious periods occurring on the periodogram.

Thus the present author had had some experience of dealing with irregular
sampling intervals before embarking upon the present research. However, the
difference was that, with Sigma Scorpii the irregularity was known, whereas
with the towed array it was not.

In his dissertation upon Sigma Scorpii the present author developed a
rapid method for estimating periods where the sampling was irregular. For
an arbitrary period, the entire sample-series was ‘folded’, each sample being
assigned a phase ‘bin’ rather than a phase point. A bin is a band of phase
points. When every ‘folded” sample had been assigned its appropriate bin,
the contents of each bin were averaged and squared then added together. If
a period of the radial velocity had been found, the sum was large. But if the
test period was not a period of the source, the contents of the bins tended
to cancel each other out, and the sum was negligibly small.

The author found that the optimal number of bins was three, and he will
Justify this assertion with a theorem and proof below.

The phase-binning method is quicker than a discrete Fourier Transform

3See G. W. Sweet, The Periodicities of Sigma Scorpii, Dissertation, Oxford Polytechnic,
1990
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because it does not involve convolution with sines or cosines. Instead, it
employs only the ‘mod’ operation.

The algorithm, when applied to the problem of the point source and the
towed array, proceeds as follows. The wavelength of the source is divided
into equal parts called ‘phase bins’. The choice of bin in which a pressure,
measured by means of a hydrophone, is placed is determined by the supposed
frequency and location of the source of interest. Naively, if the binning is
right, the measured pressures will reinforce each other. But if measured
pressures are assigned to the wrong bins, they will tend to cancel each other
out.

A bin represents a range of phase points. Because of the uncertainty of
hydrophone location, a measured pressiire should be thought of as containing
potential phase angle information about a range between points on the real
line rather than about a unique point. In other words, we regard data coming
from hydrophones as being capable of yielding ‘fuzzy’ information at best.

For a single snapshot, in the absence of noise, there must be at least
three bins per wavelength. Three is the minimum number of bins required to
corroborate a wavelength without regard to the phase angle of the signal. If
d is the distance between hydrophones reached consecutively by a wavefront,
the condition )

d < 5 (176)

applies.

In general, while the period or location of the source of a signal may be
conceived of in terms of non-rational numbers, they cannot in practice be
measured or characterized except in terms of rational ones. In this sense,
an analysis based upon the convolution of a measured signal with a notional
signal is limited. The method of phase binning requires the employment of
notional periods and locations but not the convolution with a notional signal.
Indeed, the convolution with a notional signal may in any case be limited by
the uncertainty of hydrophone location, especially if the convolution was of
such a kind that phase angle was requiring to be matched with phase angle,
t. e. point with point. Instead, we propose a sort of ‘convolution’ of a band
with band of points. Indeed, if the parallactic angle of source and array 1s
sufficiently wide to allow a good sense of the distance of the source, we believe
it possible to think of our ‘convolution’ in terms of region with region. In
other words, we are trying to stretch the notion of convolution from point
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to line and then to area, and thus expand upon the dimensional potential of
convolving.

In presenting now the algebraic elements of our method, we hope not
to do vioclence to our policy of specializing in the location of point sources
near enough to be locatable in any event if we treat plane waves in what
follows. This is done for passing convenience. We shall go on to consider the
general case of palpably spherical spreading subsequently, for which a more
differentiated approach will be required.
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6.3 The Ratio P/a.2

In the absence of noise and in a medium of infinite extent let p be measured
pressures with
p=asinf . - (17T)

Let B, (n =1, 2, 3) denote phase bins. Then

= a
By = (Fh 271_/3/0 a sin Adf o~ (178)
By (g = e /—a in 00 = 0 (179)
— = sin =
PR = s )
1 2 9a
=(P)za = —— 0d0 = —— . 180
By =(0h = 575 [, osin = (180)
Construct the power integral P as follows:
2 2 2 _ 8ld? 9EQ 2
P =(B)"+(B2)’ + (Bs)’ = eF = 1.02594q°. (181)
Therefore P
— =1.0259 . (182)

[t will be shown below that, in general, with N bins

P N3 T
— = ——sin

= g sind(2) (183)

in the limit either as A — oo with length of array [ (assuming, for convenience,
a straight antenna of known orientation) and the number of hydrophones M
constant or, with a given A and [, as M — oo.

To treat noise as effectively as possible, we must make sure that & = in
kept as small as possible. This is achieved when N = 3. which is the smallest

possible value for N.
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6.4 The Merits of an ‘Exponential’ Spacing of Hy-
drophones

The two Figures following have been included to point up what we believe to
be an advantage of spacing hydrophones non-equidistantly along a-straight
array. Suppose the antenna were straight, and that a far distant point source
was radiating upon the antenna along end-fire. Suppose, further, that the
wavelength of the source was 2d. Then all items in each bin would have the
same value, and no integration could be undertaken over the period of the
signal in the sense of the Method outlined above.

We believe that singularities arising for that and such reasons with an
array of equidistantly-spaced hydrophones may be treated by spacing the
hydrophones non-equidistantly. The graph in Figure 12 shows the plot of a
curve which is not smooth. But it has become much smoother in Figure 13,
where the coordinates (x,,,0) (m = 1, 2, ...) of the hydrophones A, are given
as follows:

0 = 1000(e 50 — 1) | (184)

The thus ‘exponential’ spacing would seem to allow a better spread of values
across a bin. As we shall argue shortly, a more or less good spread of values
across bins becomes possible with greater gross flexing of the array.

With Figures 12 and 13 there is no noise on the signal. but there is an
uncertainty of one part in a thousand in the coordinates of the hydrophones.
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Figure 12: Singularities with even spacing of hydrophones
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Figure 13: Treatment of singularities with ‘exponential’ spacing of hy-
drophones
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6.5 Determination of Amplitude of Plane Wave

For simplicity, let the array be assumed to be straight, the hydrophones
spaced equidistantly, and the source sufficiently far away for the wave front
to be planar upon arrival at the array. Let L be the length of the array, M the
number of hydrophones, Ao the wavelength of the plane wave, a the amplitude
of the wave, §f the angle of incidence of the wave upon the antenna, N the
number of bins and P the power in the binning periodogram at A = Agsecé.

6.5.1 Theorem

In the limit as M — o0, and for values of A for which L cos #/), is an integer
K,

P N .7
42 = 9280 (W) : (185)
E. g
— = 10259, N =3
a
= 16211, N=+4
= 2187, N=5
1.
~ §N, large N.
(186)

Thus a% 1s least when N = 3. It can be shown that this makes the estimate

of a? least sensitive to noise on the signal. Hence the term ‘optimal binning’
when N = 3.

6.5.2 Proof

p(r,t) = acos(2mvt — 2rr.1/ Ao + @a) , (187)
where [ = (cos 8§, —sin §).

Now r = (z,0) at point  on the array, therefore at time ¢ = #,

2ry

A

p(z) = acos(

+¢)=acos(x+ ¢) =, A= Agsech, (188)
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where

2wz
X = T)
¢ = —27wolo — do. . (189)

In binning procedure (in limit M — co)

N % 2
By=(ph = o /DN acos(x + ¢)dy = — [sm(k +é)lg’
= gg (sin(mr + ¢) — sin q)) .
Vs
Therefore _ |
Na ‘
B, = TSID(A,)‘OS(¢+ N) (190)
Similarly
N ¥ Na T
By = (p): = %/; acos(x +¢)dxy = Tr-sm( W)cos(qﬁ-l— )
. Ea , _ Na .« (2n — D)
By, = (g, = /Wn Lacos(x +@)dxy = m?sm(l ) cos (q’)—l— i )
N g . Na_ =  @N—1)r
By =(p)n = o Jastiion acos(x +¢)dxy = TSIH(E) cos (c.b+ v )

=

5 N 2n—1 1
P:Bf-ﬁ-Bgz-l-...JrB?V:az(?_ sin? Zcos( (RJ\‘I)TF):;N

tfrom Lemma below (all integer N > 2), therefore

P _N?
priw sin?( z), quod eral demonstranduwm. (192)
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6.5.3 Lemma

N
-1 1 .
> cos® [ ¢+ Pu=dk = —N, all integer N > 2. (193)
si=1 N 2
6.5.4 Proof
¥ (2n — )7 i s 2¢ 4 2n(2n + 1)
j - 05° = = 1 — cos
o (o4 ) - F \
Ly Lpy g 22
= —N-—— e N e
2 T
o lN 1§R€Ziq@+2}7\;£ N{Zﬁ‘l 41;1!
-7 T3 2 ©
e —’
4miN
ey —1
S
=0, all integer NV > 2
= 1
Iy = ;)~N, integer N > 2, quod erat demonstrandum. (194)

N. B. When Lcos8/Ao # integer, then B, # (p), exactly in the binning
procedure; for, after taking the mean of the sums over the K = [L/)\] wave-
lengths A (where A = Agsecd) along the array, there is a quantity of order
K left over at the far end.
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